

### **Presentation outline**

- Restoration ecology and Quality control concepts.
- Quality control methodology: restoration ecology as a process.
- Restoration ecology sucesses: from ideas to reality.
- Conclusions.

Quality control concepts and its aplication to restoration ecology

WHY QUALITY CONTROL IN RESTORATION ECOLOGY?

# **Restoration** ecology

hedeste het ekste het en het ekste het e

Ecological restoration is the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed (other Re-concepts)

| Key words: | process<br>recovery<br>ecosystem | ÎÎÎ | activities<br>time<br>complexity |
|------------|----------------------------------|-----|----------------------------------|
|            |                                  |     |                                  |





### **Are Restorations Successful?**

BEBBBBBBBBBBBBBBBBBBBBBB

- Numerous successes have been described in the literature, but it is recognized that ecosystems are extremely complex and their response to physical and biological manipulations are not easy to predict. (i.e., there have been a lot of failures!)
- Current restoration projects are not being done in a very organized, coherent method with little development of general theories.

SER, 2005; Hobbs and Norton, 1996

|                                        |                                         |                                                                     |                                 | Q                                                        | uality c                       | ontrol |
|----------------------------------------|-----------------------------------------|---------------------------------------------------------------------|---------------------------------|----------------------------------------------------------|--------------------------------|--------|
|                                        |                                         |                                                                     |                                 |                                                          |                                |        |
| A syste<br>determ<br>caused<br>objecti | matic a<br>ine if a<br>chang<br>ves (re | and independ<br>activities and<br>Jes and are so<br>liable feedback | dent<br>rela<br>uitat<br>(for a | examinatio<br>ted results<br>ble to achie<br>daptive man | n to<br>have<br>ve<br>agement) |        |
| Key wo                                 | rds: e                                  | xamination                                                          |                                 | activities                                               |                                |        |
|                                        | а                                       | rrangements                                                         | 5                               | commitme                                                 | ents                           |        |
|                                        | s                                       | uitability                                                          |                                 | objectives                                               | 5                              |        |
|                                        |                                         |                                                                     |                                 |                                                          |                                |        |





# **Basic Steps in Restoration**

- Getting organized .
- Identifying the problems and opportunities •
- Developing goals and objectives
- Selecting and designing restoration alternatives ٠
- implementing, monitoring, evaluating, and adapting the • project.





## **Restoration and quality**

Project managers must be informed by a program of systematic observation and monitoring

# Ţ

Design a process for converting ideas into management response, and test the process with real data

Get Real ji











# Identify the kind of ecosystem to be restored

- Type of restoration project
- Identify physical site conditions in need of repair
- Identify biotic (structural)
  interventions that are needed
- Identify landscape restrictions,
  present and future





|                                               | Technical                      | review of projects              |
|-----------------------------------------------|--------------------------------|---------------------------------|
| Planning and                                  | Technical review of project    |                                 |
| Begin technical revie<br>design stage focus o | ew of project<br>n project per | s at their conceptual formance. |
| <b>Conceptual plan</b>                        | ning                           | GIS                             |
| Activities                                    |                                | Programming                     |



| Technica                                                                                                        | l review of projects          |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------|
| Le reference de la companya de la co |                               |
| Ecosystems functionality                                                                                        | Descriptive                   |
| New technical approach                                                                                          | Lack of technical description |
| Complexity                                                                                                      | Unrealistic                   |







|                         | 70117011701170117011701170 | 167925197822 | Gu             | adiar        | nar p | roje  | CL        |
|-------------------------|----------------------------|--------------|----------------|--------------|-------|-------|-----------|
|                         |                            |              |                |              |       |       |           |
|                         |                            |              |                |              |       | 1     |           |
| Kind of ecosystem       | Project<br>density         | Estir<br>der | nated<br>nsity | Real density |       | Plant | nts alive |
| Mediterranean ecosystem | 725                        | 673          | 92%            | 505          | 75%   | 465   | 64%       |
| Strem ecosystem         | 830                        | 771          | 92%            | 703          | 91%   | 611   | 73%       |
| Transition ecosystem    | 980                        | 910          | 92%            | 792          | 87%   | 681   | 69%       |



# **Project implementation**

\*\*\*\*\*\*\*\*\*\*

Make maps of implemented activities to compare with the guidelines and existing management options.



|                  | Project implementation                    |
|------------------|-------------------------------------------|
| GIS support      | Change of decisions                       |
| Basic knowledge  | Lack of field guidelines                  |
| Quality standard | Not included in project<br>implementation |





Parcelas de contraste del muestreo post-estival de El Madroñalejo 1:10.000

Guadiamar project Evolución supervivencia 100 90 80 70 60 50 40 30 20 10 0 (%) Suppre -Suppost





|                            | Initial assessment |
|----------------------------|--------------------|
|                            |                    |
|                            |                    |
| <b>GIS and GPS control</b> | Field survey       |
|                            |                    |
| Flexibility                | Time schedule      |
|                            |                    |
| Variable control           | Uncertainly        |
|                            |                    |







|                    | Adjust programming |
|--------------------|--------------------|
|                    |                    |
| Better programming | Improvisation      |
|                    |                    |
| Adaptability       | Burocrathy         |
| O                  | llana a 19 a 19 a  |
| Complexity         | Unrealistic        |
|                    |                    |



# Restoration ecology sucesses: from ideas to reality

### 

3

CONSECUENCIES

WHERE ARE WE & WHAT HAVE WE LEARNED?

## where are we & what have we learned?

"monitoring is scary" • sounds like evaluation (judgement)

"monitoring is hard and a waste of time" • sounds like research (complex, time consuming, irrelevant)

# shifting to:

"we can use this"

|                                             | The cost of monitoring |        |                           |  |
|---------------------------------------------|------------------------|--------|---------------------------|--|
| <b>美科美科美科美科美科美科美科美科美</b>                    |                        |        |                           |  |
| Software and GPs<br>equipment, cartography. | Total                  | cost:  | 3.300 €/month.            |  |
|                                             |                        |        |                           |  |
|                                             |                        | Tech   | nician and field<br>team. |  |
|                                             |                        |        |                           |  |
|                                             |                        | 10 res | storation projects        |  |





### Conclusions

- There is a lack of monitoring in restoration projects
- Develop shared understanding of restoration ecology projects from project monitoring and reporting
- Work towards a common conceptual model of monitoring development as basis tool for common approach to restoration
- Identify next steps for technical development in restoration ecology plans
- Support networking among projects to facilitate sharing of monitoring approaches, measures, tools.