Post-fire Erosion and Rehabilitation: A Process-based Understanding

> Lee H. MacDonald Department of Forest, Rangeland, and Watershed Stewardship Colorado State University Fort Collins, CO

Contributors

- Tedd Huffman (M.S., 2002);
- Juan Benavides-Solorio (Ph.D., 2003);
- Joe Wagenbrenner (M.S., 2003);
- Matt Kunze (M.S., 2003);
- Zamir Libohova (M.S.,2004);
- Jay Pietraszek (M.S., 2005);
- Daniella Rough (M.S.,2005);
- Darren Hughes (M.S., 2005);
- Ethan Brown (M.S., 2005);
- Dr. John Stednick.

Area Burned in USFS Region 2, 1994-2003

Area Burned and Precipitation, 1994-2003

Erosion after a 100-year storm on the 1996 Buffalo Creek fire southwest of Denver, Colorado

High flows from a storm with a 30-minute rainfall intensity of 19 mm/h one year after the Buffalo Creek fire.

Channel incision from a 20 mm/hr rain event after the Cerro Grande Fire near Los Alamos, NM.

Deposition of coarse sand and gravel after the Cerro Grande fire in northern New Mexico.

Hydrology of Unburned Forests

- Coarse-textured soils (>60% sand);
- Generally good ground cover (usually \geq 80%);
- Storm runoff generated primarily by subsurface stormflow;
- Low peak flows from all but highest-magnitude storm events;
- Very low mean erosion rates (<0.1 t ha⁻¹ yr⁻¹);
- Clean, high quality water.

Post-fire Hydrology

- Loss of surface cover;
- Possible water repellent layer in the soil;
- Shift in runoff processes from sub-surface stormflow to infiltration-excess (Horton) overland flow;
- Large increases in peak flow and erosion rates;
- Downstream sedimentation;
- Degradation in water quality (turbidity, suspended sediment, nitrate, manganese, dissolved organic carbon) and aquatic habitat.

Overall Objectives

- 1. Quantify the effect of wild and prescribed fires on runoff and erosion rates in the Colorado Front Range;
- 2. Determine the rate of recovery to pre-fire conditions;
- 3. Quantify the relative importance of different controlling factors on post-fire erosion rates;
- 4. Evaluate the effectiveness of different rehabiliation techniques, using a process-based understanding to explain the results;
- 5. Use the results and understanding to guide land managers and help design more effective rehabilitation treatments.

Collecting Data at Different Spatial Scales

- Point scale: soil water repellency;
- Small plot scale:
 - Runoff and sediment yields from rainfall simulations on 1 m² plots;
- Hillslope scale:
 - Sediment production from planar hillslopes and swales (zero-order catchments) using sediment fences;
 - Using paired-swale design to compare rehabilitation techniques against untreated controls;
- Small catchment scale:
 - Runoff, suspended sediment yields, water quality, and channel morphology.

Fortuitous Collection of Pre-fire Data

- Goal was to evaluate the effects of a proposed thinning project;
- Began monitoring percent cover, erosion rates, water quality, and channel morphology in mid-2001 on sites southwest of Denver;
- Majority of study sites burned in June 2002 Hayman fire, so have pre- and post-fire data at hillslope and small catchment scales.

Post-fire Effects Vary with Burn Severity

- Burn severity classified as high, moderate or low, depending on consumption of litter and soil organic matter;
- High severity: complete consumption of organic horizon and alteration of the structure or color of the underlying mineral soil; loss of aggregates ("pulverization"):
- Moderate severity: consumption of litter layer but no visible alteration of the surface of the mineral soil;
- Low severity: only partial consumption of the surface litter;
- Severity is not equal to intensity (heat loss per unit width per unit time), but severity and intensity often assumed to be closely correlated.

Soil Water Repellency

Fire-induced soil water repellency

(DeBano, 1981)

Methods of Analysis

Water drop penetration time (WDPT):

- Apply drops at 3-cm depth increments beginning at mineral soil surface;
- Indefinite waiting time.

Critical surface tension test (CST):

- Apply 5 drops of de-ionized water;
- If pure water is not absorbed within 5 seconds, test solutions with progressively higher ethanol concentrations (increasing ethanol concentrations decrease surface tension);
- Critical surface tension (CST) is the tension of the first solution that is readily absorbed into the soil.

Critical Surface Tension by Depth: High Severity Sites

Critical surface tension by depth: Moderate severity sites

Critical Surface Tension by Depth: Low Severity Sites

Soil water repellency over time: Bobcat fire

Effect of soil moisture on water repellency

Mean soil water repellency by depth: Burned and unburned swales in 2002

Water repellency over time: Upper Saloon Gulch, 2002-2004

Soil particle-size distribution

Soil Class

Conclusions: Soil Water Repellency

- Surface in unburned areas naturally water repellent;
- Fire-induced water repellency is relatively shallow (maximum of 9 cm);
- May be stronger in prescribed fires due to higher fuel loadings and slower rate of fire spread;
- Very high spatial variability;
- Relatively rapid recovery (≤ 2 years);
- Not present under wet conditions (12 to 30+ percent soil moisture), depending on fire severity;
- CST faster and more consistent than WDPT.

Advantages of Rainfall Simulations

- 1. Not dependent on natural rain events (or lack thereof);
- 2. Provides comparable data between sites;
- 3. More rigorous evaluation of selected factors (e.g., soil type, fire severity, etc.).

Number of Simulations by Severity and Fire

	2000			2001			2002			2003			
	Severity			Severity			Severity			Severity			
		Low/			Low/			Low/			Low/		
Fire	High	Mod.	unb.	Totals									
Bobcat	7	5	4	6	4	4	11	3	4	5	2	2	57
L. Flowers *	2	2	2	3	3	3	-	-	-	-	-	-	15
Hourglass	2	0	2	-	-	-	-	-	-	-	-	-	4
Hayman	-	-	-	-	-	-	-	-	-	20	-	-	20
	11	7	8	9	7	7	11	3	4	25	2	2	96

* Prescribed fire

Mean Runoff/Rainfall Ratio by Fire Severity and Year: Bobcat Fire, 2000-2003

Soil Water Repellency vs. Runoff/Rainfall Ratio: High Severity Sites

Mean Sediment Production by Fire Severity and Year: Bobcat Fire, 2000-2003

Sediment Yield vs. Percent Bare Soil for Rainfall Simulations, Bobcat Fire

Sediment Yield vs. Percent Bare Soil for Rainfall Simulations, Hayman Fire

Erosion rates with and without rainsplash at high-severity sites: Bobcat fire

Sectiment Production at the Hillslope Scale

Number of untreated sites by fire and severity

	Date burned	Size of fire (ha)	Primary vegetation type	Sediment fences per severity			
Fire				High	Moderate	Low	Total
Big Elk	Aug-02	1,760	Lodgepole pine	3	2	1	6
Hayman	Jun-02	55,700	Ponderosa pine	31	1	0	32
Schoonover	May-02	1,490	Ponderosa pine	6	0	0	6
Hewlett Gulch	Apr-02	200	Ponderosa pine	3	0	0	3
Bobcat	Jun-00	4,289	Ponderosa pine	13	2	1	16
Dadd Bennett*	Jan-00	200	Ponderosa pine	0	3	2	5
Lower Flowers*	Nov-99	300	Ponderosa pine	4	4	2	10
Crosier Mountain*	Sep-98	1,011	Lodgepole Pine	4	1	0	5
Bear Tracks	Jun-98	196	Subalpine fir	3	0	2	5
Hourglass	Jul-94	516	Lodgepole pine	5	1	1	7
* Prescribed fire			Totals	72	14	9	95

Site Data

- Measuring sediment production using sediment fences;
- Measuring key factors for each study site:
 - Contributing area;
 - Slope and aspect;
 - Soil texture;
 - Soil water repellency;
 - Percent ground cover in spring and fall;
 - Precipitation amounts, intensity, and erosivity with tipping bucket rain gages.

Site Characteristics

- Contributing areas of 0.01-0.5 ha;
- Slopes typically 20-40%;
- All aspects;
- Annual precipitation typically 400-600 mm, with about half as snow;
- Most of erosivity comes from localized summer thunderstorms in July and August;
- Generally coarse-textured soils.

Soil Particle-Size Distribution by Fire

Bars indicate one standard deviation

Frequency Distribution of Storm Rainfall and Maximum I₃₀

Mean percent ground cover in Upper Saloon Gulch in 2001 (prior to burning) and 2002 (after the Hayman fire)

Sediment production: Summer 2001 (before Hayman fire)

Pairs of sediment fences (n = 20)

Sediment from 11 mm of precipitation in 45 minutes on 21 July 2002

Sediment production after Hayman fire: 21 July 2002 storm (11 mm in 45 minutes)

Pairs

Sediment Yield vs. Fire Severity and Season: First Two Years After Burning

Sediment Yield vs. Contributing Area: Hayman Fire, 2003

Sediment Yield vs. Time Since Burning: High-severity Sites

Vegetation recovery over time Bobcat fire, sediment fence #9

Percent Bare Soil vs. Time Since Burning

Sediment Yield vs. Percent Bare Soil

Percent Bare Soil versus Sediment Yields for Three Areas in the Bobcat Fire

High severity burns; Bars indicate one standard deviation.

Rainfall Erosivity versus Mean Sediment Yields: Five storms in the Hayman fire

Upper Saloon Gulch: 10 July 2002

17 mm rain in 1 hour 56 minutes

Sediment yields from swales vs. planar hillslopes in 2001: Bobcat fire

Planar hillslopes 2001
Swales 2001

Sediment yields by storm for swales vs. planar hillslopes: Hayman fire, 2003

Sediment yields vs. rainfall erosivity for planar hillslopes and swales: Hayman fire, 2003

Measuring rill erosion, Hayman fire

Rill erosion in Swale 4: Storm on 21 August

Estimated Sediment from Rill Erosion vs. Measured Sediment: Hayman fire

Model Calibration (50% of data; n=120)

Model	Parameter	\mathbb{R}^2	RMSE
Complete	Bare soil, rainfall erosivity, soil D_{84} ,	0.83	0.54
	hillslope position, aspect		
4-parameter	Bare soil, rainfall erosivity, soil D_{84} ,	0.72	0.68
	hillslope position		
3-parameter	Bare soil, rainfall erosivity, hillslope	0.68	0.71
	position		
2-parameter	Bare soil, rainfall erosivity	0.63	0.76
1-parameter	Bare soil	0.58	0.81

Validation of Complete Model

Validation of Two-parameter Model

Model Validation

- For the calibration dataset, adding four other variables in addition to percent bare soil increased the R² from 0.58 to 0.83 and reduced the RMSE from 0.81 to 0.54;
- 2. For the validation data set, there was relatively little difference in model performance between the simplest and most complete models;
- 3. For all models the RMSE for the validation data set was 0.65-0.73 log units (i.e., a factor of ~5).

Runoff and Water Quality at Catchment Scale

Saloon Gulch and Brush Creek Watersheds

Stream reaches: Summer 2001

Saloon Gulch

Brush Creek

Brush Creek flume before the Hayman fire

Saloon Gulch flume after the Hayman fire: 17 mm of rain on 6 July

Channel Cross-section: Saloon Gulch

Channel cross-section for Brush Creek

Horizontal distance (m)

Percent eroding banks in 2001 and 2002: Saloon Gulch and Brush Creek

Percent of Bed Material less than 8 mm in 2001 vs. 2002: Saloon Gulch and Brush Creek

Change in particle-size distribution:

Particle-size (mm)

Cummulative percent finer

Change in particle-size distribution: Saloon Gulch

Cumative percent finer

Particle Size (mm)

Mean total suspended sediment (TSS) and turbidity before and after the Hayman fire: Saloon Gulch and Brush Creek

Bobcat Gulch

Jug Gulch

Spatial variability of rain on Bobcat Gulch: 16 August 2000

Spatial variability of rain on Bobcat Gulch: 15 August 2001

Rainfall (mm)

Longitude

Storm Characteristics and Peak Runoff Rates: Bobcat fire, 2000-2001

Watershed	Depth	ا 30	Peak discharge	Return period
	(mm)	(mm hr ⁻¹)	(L sec ⁻¹)	
Bobcat Gulch	54	42	8500	25-yr 3-hr
Jug Gulch	9.6	14.8	< 18	<1-yr
Bobcat Gulch	7.5	14.8	250	<1-yr
Jug Gulch	16.3	31.6	6800	2-yr 30-min
Bobcat Gulch	13.0	23.3	2300	1-yr 30-min
Jug Gulch	7.2	13.8	180	<1-yr
Bobcat Gulch	17.9	12.7	< 25	<1-yr
Jug Gulch	14.8	9.6	< 18	<1-yr
	Watershed Bobcat Gulch Jug Gulch Bobcat Gulch Jug Gulch Bobcat Gulch Jug Gulch Bobcat Gulch Jug Gulch	WatershedDepth (mm)Bobcat Gulch54 9.6Bobcat Gulch7.5 16.3Bobcat Gulch7.2Bobcat Gulch13.0 7.2Bobcat Gulch17.9 14.8	WatershedDepth (mm)I30 (mm hr-1)Bobcat Gulch54 9.642 14.8Jug Gulch9.614.8Bobcat Gulch7.5 14.814.8Jug Gulch7.5 16.314.8 31.6Bobcat Gulch7.213.8Jug Gulch17.9 14.812.7 9.6	Watershed Depth (mm) I30 (mm hr ⁻¹) Peak discharge (L sec ⁻¹) Bobcat Gulch 54 42 8500 Jug Gulch 9.6 14.8 < 18

Peak discharge vs. 30-minute rainfall intensity (I_{30})

Storm Characteristics and Suspended Sediment: Bobcat fire

Date	Watershed	Depth	ا ا ₃₀	Sediment yield	Return period
		(mm)	(mm hr ⁻¹)	(kg ha ⁻¹)	
8 July 2001	Bobcat Gulch	6.3	12.6	0.3	<1-yr
	Jug Gulch	4.5	9.0	1.2	<1-yr
15 Aug 2001	Bobcat Gulch	7.5	14.8	1.4	<1-yr
(#2)	Jug Gulch	16.3	31.6	950	2-yr 30-min
16 Aug 2001	Bobcat Gulch	13.0	23.3	370	1-yr 30-min
	Jug Gulch	7.2	13.8	25	<1-yr

Effectiveness of Rehabilitation Techniques

Typical Emergency Rehabilitation Treatments

Scarifying and seeding

Other Techniques

Soil binding agents (e.g., polyacrylamides)

Hydromulch (aerial and ground-based)

- Large amounts of money spent after most major fires (e..g, \$25 million after Cerro Grande, \$17 million after Hayman);
- Strong political pressure to do something;
- Very few data on effectiveness;
- USFS review stated that effectiveness generally poor (Robichaud et al., 2000).

Treatments on Bobcat fire

- Mulching: July 2000; Fall 2000;
- Aerial seeding: July 2000
- Contour-felling: July 2000; Fall 2000

Treatments on Hayman fire: 2002

- Scarifying and seeding
- Dry mulching
- Hydromulching
 Ground based
 Aerial
- Polyacrylamide

Seeding

Changes in percent bare soil on controls and seeded plots: Bobcat fire, 2000-2003

Sediment yields on controls and seeded plots: Bobcat fire, 2000-2003

Scarification and Seeding

Depth of hand scarification in Hayman fire

Seed density in Hayman fire (target: 280-380 seeds m⁻²)

Sediment yields for control plots vs. seeding and scarifying: Hayman fire, 2002 and 2003

Runoff and Sediment Yields from Simulations on Seeded and Scarified Plots: Hayman Fire, 2003

Seeding: Summary

- Uneven seed distribution;
- Depth of scarification probably too shallow to break up water repellent layer;
- No evidence that it increases cover;
- No evidence that it reduces erosion;
- Surface runoff can redistribute seeds;
- Need ideal sequence of storms and lack of natural regeneration for seeding to be effective.

Changes in percent bare soil on contourfelled plots: Bobcat fire, 2000-2003

Percent bare soil on contour-felled plots: Bobcat fire, 2000-2003

Sediment yields on contour-felled plots: Bobcat fire, 2000-2003

Contour-felling Effectiveness (values in red are minimums, values in blue are maximums)

	Mean val	ue for e			
Site	Log density (m log ha ⁻¹)	Log length (m)	Log diameter (m)	Total failures (percent)	Site storage capacity (m ³ ha ⁻¹)
Bobcat	161	5.6	0.25	27	6.8
Galuchie	147	4.4	0.27	27	7.2
Spruce	538	6.6	0.25	10	18
Eldorado B-1	939	3.2	0.18	27	12
Eldorado G-1	855	2.9	0.19	23	29
Hi Meadows HST-3	776	5.8	0.20	40	32
Hi Meadows HST-2	1,310	6.2	0.23	70	9.0
Overall mean	676	5.0	0.23	32	16
Infiltration rates over time, Bobcat fire

Contour-felling: Summary

- Increase in infiltration capacity short-lived and limited in area;
- Potential to capture only 2-3 mm of runoff;
- Wide range of potential sediment storage values varying with:
 - Size of contour-felled logs;
 - Density of contour-felled logs;
 - Quality of installation;
- Could potentially capture most of sediment from an average summer;
- Poor installation can increase rill erosion;
- Not very cost-effective.

Percent bare soil on control and mulched plots: Bobcat fire, 2000-2003

Mean sediment yields on control and mulched plots: Bobcat fire, 2000-2003

Mean sediment yields on control and mulched plots: Hayman fire, 2002-2003

Runoff and Sediment Yields from Rainfall Simulations on Control and Mulched Plots: Hayman Fire, 2003

Hydromulching

Percent bare soil for aerial and ground hydromulch: Hayman fire, 2002 and 2003

Sediment yields for aerial hydromulch: Hayman fire, 2002 and 2003

Sediment yields for ground hydromulch: Hayman fire, 2002 and 2003

Hydromulch Rainfall Simulations, Hayman Fire

Why is percent cover so important, and mulching so effective?

- Provides immediate cover to reduce rainsplash and overland flow velocities;
- May reduce soil water repellency by increasing soil moisture;
- May improve germination;
- May reduce rill erosion.
- → Effectiveness probably decreases with increasing storm size;

 \rightarrow Aerial application may provide reasonable cover.

Soil Binding Agents: Polyacrylamide (PAM)

Extensively used to reduce furrow erosion and flocculation in water treatment; Many different types for different purposes; Testing micronized, anoinic, long-chain

polymer.

Percent bare soil changes for PAM treated swales: Schoonover fire, 2002 and 2003

Sediment yields for wet PAM treatment 2002-2003

Sediment yields for dry and new wet PAM treatments 2002-2003

PAM attenuation in ash and mineral soil samples

PAM Treatment Rainfall Simulations, Hayman Fire

Effectiveness of PAM: Summary

- Potential chemical interaction with ash;
- Wet formulation probably more effective than dry;
- May be most effective when mixed with hydromulch;
- Effectiveness complicated by:
 - Different formulations;
 - Different means of applications;
 - Different rates of application;
 - Effects of soil texture and ash.

Hay Bale Check Dams

Hay Bale Check Dams

- Extensively used on construction sites;
- Generally more difficult to effectively treat downstream areas than source areas;
- No quantitative data being collected, but could estimate sediment storage capacity and compare to erosion rates on untreated sites;
- Need explicit study to evaluate effectiveness.

Will the hillslope and catchment scale recover at similar rates?

Conclusions (1)

- High-severity wildfires increase runoff and sediment production rates by several orders of magnitude;
- Summer rainstorms rather than snowmelt cause virtually all of the post-fire erosion;
- Sediment production rates from high-severity sites are nearly an order of magnitude higher than sites burned at moderate or low severity;
- Sediment production rates are high in the first two summers after burning, and rapidly decline to near-background levels except in sites with exceptionally coarse soils;

Conclusions (2)

- Percent ground cover is the most important control on post-fire erosion rates;
- Rainfall erosivity, topographic convergence, and soil texture are other important controls on post-fire erosion;
- Dominant erosion process is rill incision rather than sheetwash on hillslopes;
- Soil water repellency is too short-lived to account for the observed increases in sediment production; is soil sealing the primary cause of continued high runoff and erosion rates?

Conclusions (3)

- Empirical models can predict about 60-75% of the variability in sediment production rates;
- Validation tests indicate that simple empirical models perform nearly as well as complex models, but uncertainty is still ± about 0.7 log units (± 3-4 times);
- Seeding and scarification do not increase ground cover or reduce erosion rates. Mulching is the most effective post-fire rehabilitation technique as this immediately provides ground cover.

